TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO [ESTADOS ESPECÍFICOS DA MATÉRIA E ESTRUTURAS DE ELEMENTOS QUÍMICOS]
     fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].

número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll * D
          
X
 [ESTADO QUÂNTICO].


X TODA FORMA DE FUNÇÃO E EQUAÇÃO EM:

VEJAMOS ALGUNS EXEMPLOS COMO FICA.

massa de Planck é a unidade de massa, notada por mP, no sistema de unidades naturais conhecido por unidades de Planck. Nomeadas em homenagem a Max Planck, é a massa para a qual o raio de Schwarzschild é igual ao comprimento Compton dividido por π.

O valor da massa de Planck  se expressa por uma fórmula que combina três constantes fundamentais, a constante de Planck (h), a velocidade da luz (c) e a constante de gravitação universal (G):

 ≈ 1,2209 × 1019 GeV/c² = 2,176 × 10-8 kg[1]
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


sendo  a constante reduzida de Planck.

CODATA 2002 - recomendou que o valor para a massa de Planck é 2,176 45(16) × 10−8 kg, aonde a parte entre parênteses indica a incerteza nos últimos dígitos mostrados — que é, um valor de 2,17645 × 10−8 kg ± 0,00016 × 10−8 kg.

Físicos de partículas e cosmólogos frequentemente usam a massa Planck reduzida, a qual é

 ≈ 4,340 µg.
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Adicionando o 8π simplifica várias equações em gravidade.

Diferentemente da maioria das outras unidades de Planck, a massa de Planck está em uma escala mais ou menos concebível a humanos, como a massa corporal de uma pulga é aproximadamente 4000 a 5000 mP.


Significância

A massa de Planck é a massa de um buraco negro no qual o raio de Schwarzschild multiplicado por π iguala seu comprimento de onda de Compton. Isto pode ser pensado como da massa em que uma partícula tem a mesma energia ()

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


 que um fóton de comprimento de onda λ  onde λ dividido por π é também o raio no qual a velocidade de escape torna-se maior que a velocidade da luz , causando na partícula o colapso contínuo sobre si própria. Em outras palavras, é o raio do qual um buraco negro é aproximadamente o comprimento de Planck, o qual acredita-se ser a escala de comprimento na qual tanto a relatividade quanto a mecânica quântica simultaneamente tornam-se importantes.

Em outros termos, a massa de Planck é a quantidade de massa que, incluida em uma esfera cujo raio fosse igual ao comprimento de Planck, geraria uma densidade da ordem de 1093 g/cm3. Segundo a física atual, esta teria sido a densidade do Universo após um intervalo de tempo da ordem de  segundos depois do Big Bang, o chamado tempo de Planck.





Em física, o tempo de Planck, (tP), é a unidade de tempo no sistema de unidades naturais, conhecidas como unidades de Planck. Neste intervalo de tempo a luz viaja, no vácuo, uma distância que define a unidade natural conhecida por comprimento de Planck.[1] A unidade recebe esse nome em referência a Max Planck, o primeiro a propô-la.

O tempo de Planck é definido como:

[2]
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


onde:

 é a constante de Planck reduzida
G = constante gravitacional
c = velocidade da luz no vácuo
s é a unidade de tempo do sistema internacional, o segundo.

Os dois dígitos entre parênteses denotam o erro padrão do valor estimado.

Tempo de Planck é o tempo passado sobre o Big Bang a partir do qual as implicações da teoria da relatividade geral passaram a ser válidas. Este intervalo de tempo situa-se na ordem dos 10−43 s. Para regressões menores que o tempo de Planck é necessária uma teoria quântica da gravidade para explicar os fenômenos observados. Embora separado do instante inicial por uma fração ínfima de segundo, o Tempo de Planck não se confunde com o momento do Big Bang, porque a matéria energia passou por mudanças dramáticas naqueles pedaços infinitesimais de tempo que se sucedera a ocorrência da explosão inicial, que permitiu a expansão das 3 dimensões espaciais a que estamos acostumados a viver (altura x largura x profundidade) ao longo da 'linha do tempo'.




Em física, comprimento de Planck, denotado por P, é uma unidade de comprimento igual a 1,616199(97) × 10−35 m e corresponde à distância que a luz percorre no vácuo durante um tempo de Planck. É unidade básica do Sistema de Unidades de Planck.

O comprimento de Planck pode ser definido a partir de três constantes físicas fundamentais, quais sejam: a velocidade da luz no vácuo c, a constante de Planck e a constante gravitacional.

O comprimento de Planck desempenha uma função importante na física moderna, pois para comprimentos inferiores a este, tanto a mecanica quântica, como a relatividade geral deixam de conseguir descrever os comportamentos de particulas. Espaços inferiores ao comprimento de Planck têm sido alvo de exaustiva investigação na busca de uma teoria unificadora da relatividade com a mecânica quântica.

Valor

O comprimento de Planck P é definido como

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


onde  é a velocidade da luz no vácuo, G é a constante gravitacional e ħ é a constante de Planck reduzida.[1][2]

O comprimento de Planck é aproximadamente 10−20 vezes o diâmetro de um próton.





Constante de Boltzmann

Origem: Wikipédia, a enciclopédia livre.

constante de Boltzmann ( ou ) é a constante física que relaciona temperatura e energia de moléculas.[1] Tem o nome do físico austríaco Ludwig Boltzmann, que fez importantes contribuições para a física e para a mecânica estatística, na qual a sua constante tem um papel fundamental. A 26ª Conferência Geral de Pesos e Medidas fixou o valor exato da constante de Boltzmann:[2]

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


História


Embora Boltzmann tenha feito primeiro a ligação entre entropia e probabilidade, em 1877, a relação não foi expressa com uma constante antes de Max Planck fazê-lo. , com um valor preciso de 1.346×10−23 

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


  (apenas 2,5% menor que o conhecido hoje), introduzido na lei de Planck para a radiação do corpo negro, em 1900-1901, no mesmo artigo em que Planck introduziu a constante que leva seu nome, a relação entre a frequência e energia de fótons e a equação de Boltzmann-Planck (por vezes chamada apenas de equação de Boltzmann).[3]

Determinação experimental

A forma mais simples de chegar à constante de Boltzmann é dividir a constante dos gases perfeitos pela constante de Avogadro.

A constante de Boltzmann relaciona assim a ideia de que, para qualquer quantidade de um gás ideal, obtemos um valor constante caso dividirmos o valor obtido a partir da multiplicação de pressão e volume pelo valor da temperatura, o   ou .

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


 Deste modo estamos a considerar que  é a quantidade de energia por mol de moléculas de gás. Ao dividir este novo valor pelo número de Avogadro obtemos a quantidade de energia contida por cada molécula de gás, de acordo com as expressões:

,
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


 (ou )
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Valores da constantes de Boltzmann em unidades diferentes

Valores de UnidadesComentários
J/KUnidades do SI, valor de 2017 do CODATA na unidades do SI [1]
eV/KValores do CODATA [1]
electronvolt [1]
Hz/KValores do CODATA[1]
 h [1]
EH/KR[1]
[1]
erg/KSistema CGS, 1 erg = 
cal/KCaloria 
cal/°Rgrau de Rankine 
ft lb/°Rforça de pés - libras 
cm−1/KValor do CODATA[1]
kcal/(mol·K)na forma molar, frequentemente usado em mecânica estatística, usa-se caloria termoquímica = 4.184 Joule
kJ/(mol·K)na forma molar frequentemente usado em mecânica estatística.
 em nanômetros por piconewton em 24°C, usado na Biofísica.
dBW/K/Hzem decibel watts, usado nas telecomunicações (Veja Ruído de Johnson–Nyquist)
bitem bits (logaritmo com base 2), usado na Entropia da informação valor exato é 
natem nats (logaritmo com base ), usado na Entropia da informação (veja Unidades de Planck)


X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 



As unidades de Planck ou unidades naturais são um sistema de unidades proposto pela primeira vez em 1899 por Max Planck. O sistema mede várias das magnitudes fundamentais do universo: tempolongitudemassacarga elétrica e temperatura. O sistema se define fazendo que estas cinco constantes físicas universais da tabela tomem o valor 1 quando se expressem equações e cálculos em tal sistema.

O uso deste sistema de unidades traz consigo várias vantagens. A primeira e mais óbvia é que simplifica muito a estrutura das equações físicas porque elimina as constantes de proporcionalidade e faz com que os resultados das equações não dependam do valor das constantes.

Por outra parte, se podem comparar muito mais facilmente as magnitudes de distintas unidades. Por exemplo, dois prótons se repelem porque a repulsão eletromagnética é muito mais forte que a atração gravitacional entre eles. Isto pode ser comprovado ao ver que os prótons têm uma carga aproximadamente igual a uma unidade natural de carga, mas sua massa é muito menor que a unidade natural de massa.

Também permite evitar bastantes problemas de arredondamento, sobretudo em computação. Entretanto, têm o inconveniente de que ao usá-las é mais difícil perceber-se os erros dimensionais. São populares na área de investigação da relatividade geral e a gravidade quântica.

As unidades de Planck podem ser chamadas (por ironia) pelos físicos como as "unidades de Deus". Isto elimina qualquer arbitrariedade antropocêntrica do sistema de unidades.

Tabela 1: Constantes físicas fundamentais

ConstanteSímboloDimensão
velocidade da luz no vácuoL / T
Constante de gravitaçãoL3/T2M
Constante reduzida de Planck onde  é a constante de PlanckML2/T
Constante de força de Coulomb onde  é a permissividade no vácuoM L3Q2 T2
Constante de BoltzmannM L3/T2K
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Expressão de leis físicas em unidades de Planck

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


se converte em
 utilizando unidades de Planck.
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


se converte em
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


  • A energia de uma partícula ou fóton com frequência radiante  em sua função de onda
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


se converte em
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


se converte em
(por exemplo, um corpo com uma massa de 5.000 unidades de Planck de massa tem uma energia intrínseca de 5.000 unidades de Planck de energia) e sua forma completa
se converte em
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


se converte em
  • A unidade de temperatura se define para que a media de energia térmica cinética por partícula por grau de libertade de movimento
se converte em
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


se converte em
 .
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


se convertem respectivamente em
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


utilizando as unidades de Planck. (Os fatores  podem ser eliminados se  for normalizado, em vez da constante de força de Coulomb .)

Unidades de Planck básicas

Ao dar valor 1 às cinco constantes fundamentais, as unidades de tempo, comprimento, massa, carga e temperatura se definem assim:

Tabela 2: Unidades de Planck básicas

NomeDimensãoExpressãoEquivalência aproximada no Sistema Internacional
Tempo PlanckTempo (T)5.39121 × 10−44 s
Comprimento de PlanckComprimento (L)1.61624 × 10−35 m
Massa de PlanckMassa (M)2.17645 × 10−8 kg
Carga de PlanckCarga elétrica (Q)1.8755459 × 10−18 C
Temperatura de PlanckTemperatura (ML2T−2/k)1.41679 × 1032 K
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Unidades de Planck derivadas




Ordens de magnitude para massa

Origem: Wikipédia, a enciclopédia livre.
(Redirecionado de Ordens de magnitude (massa))

Para ajudar a comparar diferentes ordens de magnitude, a seguinte lista descreve vários níveis de massa entre 10−36kg e 1053 kg.

Fator (kg)ValorItem
10−361.783×10−36 kgUm eV/c², a massa equivalente de um eletronvolt de energia.
3.6×10−36 kgElétron neutrino, limite superior de massa (2 eV/c²)
10−35  
10−34  
10−33  
10−32  
10−319.11×10−31 kgElétron (511 MeV/c²), a mais leve partícula elementar com uma massa de repouso não nula.
10−30  
10−29  
10−281.9×10−28 kgMúon (106 MeV/c²)
10−27
yoctograma (yg)
1.661×10−27 kgUnidade de massa atômica (u) ou dalton (Da)
1.673×10−27 kgPróton (938.3 MeV/c²)
1.674×10−27 kgÁtomo de hidrogênio, o mais leve átomo
1.675×10−27 kgNêutron (939.6 MeV/c²)
10−261.15×10−26 kgÁtomo de lítio (6.941 u)
2.99×10−26 kgMolécula de água (18.015 u)
7.95×10−26 kgÁtomo de titânio (47.867 u)
10−251.79×10−25 kgÁtomo de prata (107.8682 u)
1.6×10−25 kgbóson Z (91.2 GeV/c²)
3.1×10−25 kgQuark "top" (173 GeV/c²), a mais pesada partícula elementar conhecida
3.2×10−25 kgMolécula de cafeína (194 u)
3.45×10−25 kgÁtomo de chumbo-208, o mais pesado isótopo estável conhecido
10−24
zeptograma (zg)
  
10−23  
10−221.1×10−22 kgMolécula de hemoglobina A do sangue
10−21
attograma (ag)
  
10−2010−20 kgUm pequeno vírus
10−19  
10−18
femtograma (fg)
  
10−171.1×10−17 kgMassa equivalente de um joule
4.6×10−17 kgMassa equivalente de uma caloria
10−167×10−16 kgBactéria Escherichia coli (E. coli)
10−15
picograma (pg)
  
10−14  
10−13  
10−12
nanograma (ng)
10−12 kgCélula humana média (1 nanograma)
10−11  
10−103.5×10−10 kgUm pequeno grão de areia (0,063 mm de diâmetro, 350 nanogramas)
10−9
micrograma (µg)
2×10−9 kgMassa do óvulo humano, na massa incerta do quilograma protótipo (2 microgramas)
10−82.2×10−8 kgMassa de Planck
10−7  
10−6
miligrama (mg)
1–2×10−6 kgMassa típica de um mosquito (1–2 miligramas)
10−5
centigrama (cg)
1.1×10−5 kgGrão grande de areia (2 mm de diâmetro, 11 miligramas)
10−4
decigrama (dg)
1.5×10−4 kgQuantidade típica de cafeína em uma xícara de café (150 miligramas)
2×10−4 kgCarat métrica (200 miligramas)
10−3
grama (g)
10−3 kgUm centímetro cúbico de água (1 grama)
8×10−3 kgMoedas típicas: euro (7.5 gramas) e Dólar dos E.U. A. (8.1 gramas)
10−2
decagrama (dag)
1.2–4×10−2 kgCamundongo adulto (Mus musculus, 12–40 gramas)
2.4×10−2 kgQuantidade de etanol em uma dose de destilado (24 gramas)
2.8×10−2 kgOnça (avoirdupois) (28.35 gramas)
10−1
hectograma   (hg)
0.15 kgFígado humano (150 gramas)
0.454 kg
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


1 kg e mais

Fator (kg)ValorItem
1 kg
quilograma (kg)
1 kgUm litro de água, aprox.
3 kgBebê humano recém-nascido
4.0 kgWomen's shotput
5–7 kgGato doméstico
7.26 kgMen's shotput
101
miriagrama (mag)
10–30 kgUm monitor CRT de computador, ou uma televisão CRT.
15–20 kgCão de tamanho médio
70 kgHumano adulto; cão grande
102
quintal métrico (q)
180–250 kgLeão maduro, fêmea (180 kg) e macho (250 kg)
700 kgVaca
907.18474 kgtonelada curta (2000 libras - EUA)
103
megagrama (Mg) (ou tonelada métrica) (t)
1000 kgTonelada métrica/ton; um metro cúbico de água
1016.0469088 kgTon (Britânica) / 1 tonelada longa (2240 libras - EUA)
800–1600 kgAutomóvel de passeio típico
3000–7000 kgElefante adulto
5000 kgUma colher de chá (5 ml) de material das anãs brancas (5 tons)
1041.1×104 kgTelescópio espacial Hubble (11 tons)
1.2×104 kgO maior elefante registrado (12 tons)
1.4×104 kgSino do Big Ben (14 tons)
4.4×104 kgCarga normal de um caminhão cavalo mecânico-reboque (44 tons)
6.0×104 kgO maior meteoritoMeteorito Hoba West (60 tons)
8–10×104 kgMaior dinossauro conhecido, o Argentinosaurus (80–100 tons)
1051.8x105 kgO maior animal conhecido, a baleia azul (180 tons)
1.87×105 kgEstação Espacial Internacional (187 tons)
6×105 kgAntonov An-225 (o mais pesado avião) com carga máxima (600 tons); vazio: 250 tons
106
gigagrama (Gg)
1.25×106 kgTronco da Sequóia gigante chamada General Sherman (1250 tons)
1.5×106 kgPortão individual da Barreira do Tâmisa
2.041×106 kgMassa no lançamento do Space Shuttle (2041 tons)



X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Comentários

Postagens mais visitadas deste blog

SISTEMA TOPOGEOMÉTRICO DE GRACELI.